Publication

Clarithromycin and Pantoprazole Gastro-Retentive Floating Bilayer Tablet for the Treatment of Helicobacter Pylori: Formulation and Characterization

Published : 27 January 2023

Associate Professor Dr. Lim Vuanghao
Authors : Ghufran Ullah, Asif Nawaz, Muhammad Shahid Latif, Kifayat Ullah Shah, Saeed Ahmad, Fatima Javed, Mulham Alfatama, Siti Aisyah Abd Ghafar, Vuanghao Lim
Title of Publication : Clarithromycin and Pantoprazole Gastro-Retentive Floating Bilayer Tablet for the Treatment of Helicobacter Pylori: Formulation and Characterization
Journal Name : Gels
Quartile : Q1
Impact Factor : 4.432
Link : https://www.mdpi.com/2310-2861/9/1/43
Description :

Bilayer/multilayer tablets have been introduced to formulate incompatible components for compound preparations, but they are now more commonly used to tailor drug release. This research aimed to formulate a novel gastro-retentive tablet to deliver a combination of a fixed dose of two drugs to eliminate Helicobacter pylori (H. pylori) in the gastrointestinal tract. The bilayer tablets were prepared by means of the direct compression technique. The controlled-release bilayer tablets were prepared using various hydrophilic swellable polymers (sodium alginate, chitosan, and HPMC-K15M) alone and in combination to investigate the percent of swelling behavior and average drug release. The weight of the controlled-release floating layer was 500 mg, whereas the weight of the floating tablets of pantoprazole was 100 mg. To develop the most-effective formulation, the effects of the experimental components on the floating lag time, the total floating time, T 50%, and the amount of drug release were investigated. The drugs’ and excipients’ compatibilities were evaluated using ATR-FTIR and DSC. Pre-compression and post-compression testing were carried out for the prepared tablets, and they were subjected to in vitro characterization studies. The pantoprazole layer of the prepared tablet demonstrated drug release (95%) in 2 h, whereas clarithromycin demonstrated sustained drug release (83%) for up to 24 h (F7). The present study concluded that the combination of sodium alginate, chitosan, and HPMC polymers (1:1:1) resulted in a gastro-retentive and controlled-release drug delivery system of the drug combination. Thus, the formulation of the floating bilayer tablets successfully resulted in a biphasic drug release. Moreover, the formulation (F7) offered the combination of two drugs in a single-tablet formulation containing various polymers (sodium alginate, chitosan, and HPMC polymers) as the best treatment option for local infections such as gastric ulcers.
Scroll to Top